Aerococcus sanguinicola and urinae

Calibration of zone diameter breakpoints to MIC values

Version 1.1
June 2018
Aerococcus sanguinicola and urinae
MIC and zone diameter correlates

- The following histograms present inhibition zone diameter distributions from EUCAST antimicrobial susceptibility testing. In most, the different colours of the bars indicate different MIC values. In some, the colours of the bars indicate a resistance gene or a resistance mechanism.

- The distributions include data for wild-type isolates and for isolates with acquired resistance mechanisms. A large number of isolates with MIC values close to the edge of the wild-type distribution and/or close to EUCAST clinical breakpoints were intentionally included. These distributions can not be used to infer resistance rates or the performance of the tests with routine isolates.

- For some agents, isolates were tested on more than one occasion, including parallel tests with disks and media from several manufacturers. When this is the case, data are presented as both the “number of isolates tested” and the “total number of MIC-zone diameter correlates”, including replicate tests and parallel tests with disks and media from different sources.
Aerococcus sanguinicola and urinae
Materials and methods

• Antimicrobial susceptibility testing was performed on clinical isolates of Aerococcus sanguinicola and urinae collected from several laboratories, including isolates with known resistance mechanisms. Disk diffusion was performed on MH-F media according to EUCAST methodology and MICs were determined with the ISO broth microdilution method, agar dilution or gradient tests on MH-F media.

• The distributions of MIC vs. zone diameter in this presentation are the result of a collaboration between EUCAST; Clinical Microbiology, Slagelse Hospital, Denmark; Public Health Wales, Cardiff, UK; CHU Côte de Nacre, France and Clinical Microbiology, Lund, Sweden.

• This presentation is based on EUCAST Clinical Breakpoint Tables v. 8.1.
Changes from previous version (1.0)

<table>
<thead>
<tr>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>• No changes. Breakpoints checked against latest version of EUCAST Clinical Breakpoint Tables.</td>
</tr>
</tbody>
</table>
Explanation of graphs:

Zone diameter distribution with MIC values or resistance mechanisms as coloured bars.

Ciprofloxacin 5 µg vs. MIC
A. urinae and A. sanguinicola, 60 isolates

MIC (mg/L)
- 32
- 16
- 8
- 4
- 2
- 1
- 0.5
- 0.25

Zone diameter breakpoint

No of observations

Inhibition zone diameter (mm)

Resistant by EUCAST MIC breakpoints

Susceptible by EUCAST MIC breakpoints

MIC
distribution
with
MIC
values
or
resistance
mechanisms
as
coloured
bars.

Explanation of graphs:

Zone diameter distribution with MIC values or resistance mechanisms as coloured bars.

Ciprofloxacin 5 µg vs. MIC
A. urinae and A. sanguinicola, 60 isolates

MIC (mg/L)
- 32
- 16
- 8
- 4
- 2
- 1
- 0.5
- 0.25

Zone diameter breakpoint

No of observations

Inhibition zone diameter (mm)

Resistant by EUCAST MIC breakpoints

Susceptible by EUCAST MIC breakpoints
Benzylpenicillin 1 unit vs. MIC
A. urinae and A. sanguinicola, 214 isolates (448 correlates)

(3 data sources)

Breakpoints

MIC
S≤0.125, R>0.125 mg/L

Zone diameter
S≥21, R<21 mm
Benzylpenicillin 1 unit vs. MIC
A. urinae, 126 isolates (267 correlates)

(3 data sources)

<table>
<thead>
<tr>
<th>MIC (mg/L)</th>
<th>No of observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.125</td>
<td></td>
</tr>
<tr>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>≤0.03</td>
<td></td>
</tr>
</tbody>
</table>

Breakpoints
- **MIC**
 - S ≤ 0.125, R > 0.125 mg/L
- **Zone diameter**
 - S ≥ 21, R < 21 mm
Benzylpenicillin 1 unit vs. MIC
A. sanguinicola, 87 isolates (181 correlates)

(3 data sources)

Breakpoints
MIC
S≤0.125, R>0.125 mg/L
Zone diameter
S≥21, R<21 mm
Ampicillin 2 µg vs. MIC
A. urinae and A. sanguinicola, 60 isolates (120 correlates)

(1 data source)

Breakpoints
MIC S\leq0.25, R>0.25 mg/L
Zone diameter S\geq26, R<26 mm
Ampicillin 2 µg vs. MIC
A. urinae, 30 isolates (60 correlates)

(1 data source)

Breakpoints
MIC
S≤0.25, R>0.25 mg/L

Zone diameter
S≥26, R<26 mm
Ampicillin 2 µg vs. MIC
A. sanguinicola, 30 isolates (60 correlates)

(1 data source)

<table>
<thead>
<tr>
<th>MIC (mg/L)</th>
<th>No of observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>4</td>
</tr>
<tr>
<td>0.125</td>
<td>6</td>
</tr>
<tr>
<td>0.06</td>
<td>2</td>
</tr>
<tr>
<td>0.03</td>
<td>3</td>
</tr>
<tr>
<td>≤0.016</td>
<td>2</td>
</tr>
</tbody>
</table>

Breakpoints
- MIC: S≤0.25, R>0.25 mg/L
- Zone diameter: S≥26, R<26 mm
Meropenem 10 µg vs. MIC
A. urinae and *A. sanguinicola*, 192 isolates (218 correlates)

(3 data sources)

Breakpoints
- **MIC**
 - $S \leq 0.25$, $R > 0.25$ mg/L
- **Zone diameter**
 - $S \geq 31$, $R < 31$ mm
Meropenem 10 µg vs. MIC
A. urinae, 117 isolates (139 correlates)

(3 data sources)

Breakpoints
MIC
S≤0.25, R>0.25 mg/L
Zone diameter
S≥31, R<31 mm
Meropenem 10 µg vs. MIC
A. sanguinicola, 77 isolates (107 correlates)

Breakpoints
- MIC: $S \leq 0.25$, $R > 0.25$ mg/L
- Zone diameter: $S \geq 31$, $R < 31$ mm

MIC (mg/L)
- 0.125
- 0.06
- ≤ 0.03
Ciprofloxacin 5 µg vs. MIC
A. urinae and A. sanguinicola, 60 isolates

(1 data source)

Breakpoints
MIC
S≤2, R>2 mg/L
Zone diameter
S≥21, R<21 mm
Ciprofloxacin 5 µg vs. MIC
A. urinae, 30 isolates

(1 data source)

Breakpoints

<table>
<thead>
<tr>
<th>MIC (mg/L)</th>
<th>S ≤ 2, R > 2 mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone diameter</td>
<td>S ≥ 21, R < 21 mm</td>
</tr>
</tbody>
</table>

No of observations

Inhibition zone diameter (mm)

MIC (mg/L)

- 4
- 2
- 1
- 0.5
- 0.25
Ciprofloxacin 5 µg vs. MIC
A. sanguinicola, 30 isolates

(1 data source)

Breakpoints

MIC: S≤2, R>2 mg/L
Zone diameter: S≥21, R<21 mm
Norfloxacin 10 µg vs. Ciprofloxacin MIC

A. urinae and *A. sanguinicola*, 59 isolates

(1 data source)

<table>
<thead>
<tr>
<th>MIC (mg/L)</th>
<th>Number of Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>0.25</td>
<td>1</td>
</tr>
</tbody>
</table>

Breakpoints

- Ciprofloxacin MIC: S≤2, R>2 mg/L
- Norfloxacin zone diameter (screen): S≥17, R<17 mm
Norfloxacin 10 μg vs. Ciprofloxacin MIC

A. urinae, 29 isolates

(1 data source)

Breakpoints

- Ciprofloxacin MIC
 - S≤2, R>2 mg/L
- Norfloxacin zone diameter (screen)
 - S≥17, R<17 mm
Norfloxacin 10 µg vs. Ciprofloxacin MIC
A. sanguinicola, 30 isolates

(1 data source)

Breakpoints
- Ciprofloxacin MIC: S≤2, R>2 mg/L
- Norfloxacin zone diameter (screen): S≥17, R<17 mm
Norfloxacin 10 µg vs. Levofloxacin MIC
A. urinae and *A. sanguinicola*, 58 isolates

(1 data source)

Breakpoints

Levofloxacin MIC

S ≤ 2, R > 2 mg/L

Norfloxacin zone diameter (screen)

S ≥ 17, R < 17 mm
Norfloxacin 10 µg vs. Levofloxacin MIC

A. urinae, 28 isolates

(1 data source)

Breakpoints

- **Levofloxacin MIC**: S≤2, R>2 mg/L
- **Norfloxacin zone diameter (screen)**: S≥17, R<17 mm
Norfloxacin 10 µg vs. Levofloxacin MIC

A. sanguinicola, 30 isolates

(1 data source)

<table>
<thead>
<tr>
<th>MIC (mg/L)</th>
<th>No of observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Breakpoints

Levofloxacin MIC: $S \leq 2$, $R > 2$ mg/L

Norfloxacin zone diameter (screen): $S \geq 17$, $R < 17$ mm
Vancomycin 5 µg vs. MIC
A. urinae and *A. sanguinicola*, 204 isolates (257 correlates)

(2 data sources)

Breakpoints

<table>
<thead>
<tr>
<th>MIC (mg/L)</th>
<th>Breakpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤0.5</td>
<td>S≤1, R>1 mg/L</td>
</tr>
<tr>
<td>≤1</td>
<td>S≥16, R<16 mm</td>
</tr>
</tbody>
</table>

No of observations vs. Inhibition zone diameter (mm)
Vancomycin 5 µg vs. MIC
A. urinae, 120 isolates (150 correlates)

(2 data sources)

<table>
<thead>
<tr>
<th>MIC (mg/L)</th>
<th>≤0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of observations</td>
<td>2</td>
</tr>
</tbody>
</table>

Breakpoints

<table>
<thead>
<tr>
<th>MIC</th>
<th>≤1, R>1 mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone diameter</td>
<td>≥16, R<16 mm</td>
</tr>
</tbody>
</table>
Vancomycin 5 µg vs. MIC
A. sanguinicola, 84 isolates (107 correlates)

(2 data sources)

No of observations

Inhibition zone diameter (mm)

Breakpoints

MIC S≤1, R>1 mg/L
Zone diameter S≥16, R<16 mm

MIC (mg/L)
- 1
- ≤0.5
Nitrofurantoin 100 µg vs. MIC
A. urinae and *A. sanguinicola*, 60 isolates (120 correlates)

(2 data sources)

Breakpoints

- **MIC**
 - S ≤ 16, R > 16 mg/L

- **Zone diameter**
 - S ≥ 16, R < 16 mm
Nitrofurantoin 100 µg vs. MIC
A. urinae, 30 isolates (60 correlates)
(2 data sources)

<table>
<thead>
<tr>
<th>MIC (mg/L)</th>
<th>Breakpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>S ≤ 16, R > 16 mg/L</td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>0.125</td>
<td></td>
</tr>
</tbody>
</table>

Breakpoints
MIC: S ≤ 16, R > 16 mg/L
Zone diameter: S ≥ 16, R < 16 mm
Nitrofurantoin 100 µg vs. MIC
A. sanguinicola, 30 isolates (60 correlates)

(2 data sources)

Breakpoints
MIC S\leq 16, R>16 mg/L
Zone diameter S\geq 16, R<16 mm
Rifampicin 5 µg vs. MIC
A. urinae and A. sanguinicola, 190 isolates (232 correlates)

(3 data sources)

Breakpoints

<table>
<thead>
<tr>
<th>MIC (mg/L)</th>
<th>S≤0.125, R>0.125 mg/L</th>
<th>Zone diameter S≥25, R<25 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤0.002</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Rifampicin 5 µg vs. MIC
A. urinae, 112 isolates (125 correlates)

(3 data sources)

Breakpoints
- **MIC**
 - S ≤ 0.125, R > 0.125 mg/L
- **Zone diameter**
 - S ≥ 25, R < 25 mm
Rifampicin 5 µg vs. MIC
A. sanguinicola, 77 isolates (107 correlates)

(3 data sources)

Breakpoints

<table>
<thead>
<tr>
<th>MIC (mg/L)</th>
<th>No of observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.125</td>
<td>10</td>
</tr>
<tr>
<td>0.06</td>
<td>12</td>
</tr>
<tr>
<td>0.03</td>
<td>6</td>
</tr>
<tr>
<td>0.016</td>
<td>10</td>
</tr>
<tr>
<td>0.008</td>
<td>4</td>
</tr>
</tbody>
</table>

Inhibition zone diameter (mm)

- S ≤ 0.125, R > 0.125 mg/L
- S ≥ 25, R < 25 mm

Zone diameter

- S ≤ 0.125, R > 0.125 mg/L
- S ≥ 25, R < 25 mm