Reporting β-lactam Susceptibility in Enterobacteriaceae

The Pro Case
Report in Accordance with Results

John Turnidge
SA Pathology, South Australia
In other words...

• **Phenotype?**

 » or

• **Genotype?**
β-Lactamases in Laboratory and Clinical Resistance

DAVID M. LIVERMORE*

Department of Medical Microbiology, London Hospital Medical College, London E1 2AD, United Kingdom

beta-Lactamases - the Threat Renews.

Livermore DM.
Antibiotic Resistance Monitoring and Reference Laboratory, Health Protection Agency Centre for Infections, 61 Colindale Avenue, NW9 5EQ, London, UK.
david.livermore@hpa.org.uk

Journal of Antimicrobial Chemotherapy (2009) 64, Suppl. 1, i29–i36
doi:10.1093/jac/dkp255

Has the era of untreatable infections arrived?

David M. Livermore*

Antibiotic Resistance Monitoring and Reference Laboratory, Health Protection Agency Centre for Infections, 61 Colindale Avenue, London NW9 5EQ, UK
β-lactam resistance mechanisms

- β-lactamases
- Porin mutations
- ??Altered PBPs
Enterobactericeae β-lactamases

Acquired
- TEM-1/2
- OXAs
- ESBL TEMs
- ESBL SHVs
- CTX-Ms
- AmpC
- IMPs
- VIMs
- KPCs
- etc, etc etc

Intrinsic
- **Class C**
 - AmpC and similar
- **Class A**
 - SHV-1 (+OKP, LEN)
 - OXYs
 - CTX-M progenitors
 - *P. vulgaris & penneri* enzymes
 - *C. koseri* enzyme
Breakpoints and expert rules for 3rd and 4th generation cephalosporins and aztreonam for Enterobacteriaceae with and without acquired beta-lactam resistance mechanisms.

The following revised proposals are for breakpoints and expert rules in relation to 3rd and 4th generation cephalosporins and aztreonam for Enterobacteriaceae with and without acquired beta-lactam resistance mechanisms.
The current proposal made by the EUCAST Steering Committee (8-9 February, 2010) is as follows:

1. To retain current susceptible and resistant breakpoints for cefotaxime and ceftriaxone as follows.
 Cefotaxime \[S \leq 1 \text{ / } R > 2 \text{ mg/L} \]
 Ceftriaxone \[S \leq 1 \text{ / } R > 2 \text{ mg/L} \]

2. To reduce the I/R breakpoints for ceftazidime, cefepime and aztreonam from 8 mg/L to 4 mg/L.
 Cefepime \[S \leq 1 \text{ / } R > 4 \text{ mg/L} \]
 Ceftazidime \[S \leq 1 \text{ / } R > 4 \text{ mg/L} \]
 Aztreonam \[S \leq 1 \text{ / } R > 4 \text{ mg/L} \]

As the pharmacokinetics and pharmacodynamics of these agents are similar it is appropriate to reduce the I/R breakpoints similarly.

3. To retain the non-species-related breakpoints for extended-spectrum cephalosporins (cefotaxime, ceftriaxone, ceftazidime and cefepime) and aztreonam.

4. To report all 3rd and 4th generation cephalosporin and aztreonam results "as found".

5. To modify expert rules in accordance with Pk/Pd criteria and current clinical evidence (distributed previously).

6. To avoid recommendations on how to detect specific beta-lactamases in the expert rules as this is not needed for expert rules. Recommendations will be provided in the future as a separate document.
The Case for the Phenotype

• Or what you see is what you get
No disagreement

• β-lactams are useful drugs for treating gram-negative infections
• β-lactamases are important in reducing response to treatment in many cases
• β-lactamases are becoming more common and diverse
• β-lactamases have infection control implications
• β-lactamases are fun!
Reporting “as tested”

- **Does not mean:**
 - Emerging β-lactamases
 - Are not important or
 - Should not be tracked
 - FAR FROM IT!

- **Does mean**
 - That patients will respond to therapy regardless of the presence of the β-lactamase (and its gene),
 - PROVIDED THAT THE MIC OF THE STRAIN IS BELOW THE CLINICAL BREAKPOINT
Clinical Breakpoint Data Components

- **MIC distributions and wild-type cut-offs (ECVs)**
 - Maybe supplemented by genotype
- **Pharmacokinetics and Pharmacodynamics**
 - Animal model data (PK/PD to define targets)
 - Human PK and PD
- **Validation in prospective studies**
In vitro
Cefepime / Escherichia coli
EUCAST MIC Distribution - Reference Database

MIC distributions include collated data from multiple sources, geographical areas and time periods and can never be used to infer rates of resistance.

MIC
Epidemiological cut-off: WT ≤ 0.125 mg/L
Clinical breakpoints: S ≤ 1 mg/L, R > 8 mg/L

4018 observations (47 data sources)
Cefepime / Klebsiella pneumoniae
EUCAST MIC Distribution - Reference Database

MIC distributions include collated data from multiple sources, geographical areas and time periods and can never be used to infer rates of resistance.

MIC (mg/L)

% microorganisms

Epidemiological cut-off: WT ≤ 0.125 mg/L
Clinical breakpoints: S ≤ 1 mg/L, R > 8 mg/L

1235 observations (2 data sources)
Ceftazidime / Escherichia coli

EUCAST MIC Distribution - Reference Database

MIC distributions include collated data from multiple sources, geographical areas and time periods and can never be used to infer rates of resistance.

MIC (mg/L)

% microorganisms

Epidemiological cut-off: WT ≤ 0.5 mg/L

Clinical breakpoints: S ≤ 1 mg/L, R > 8 mg/L
Ceftazidime / Klebsiella pneumoniae
EUCAST MIC Distribution - Reference Database

MIC distributions include collated data from multiple sources, geographical areas and time periods and can never be used to infer rates of resistance.

Epidemiological cut-off: WT ≤ 0.5 mg/L
Clinical breakpoints: S ≤ 1 mg/L, R > 3 mg/L

5319 observations (67 data sources)
In muride
Multiple ESBL-negative and ESBL-positive strains of *E. coli*, *Klebsiella* spp., *Enterobacter* spp. and *Serratia* spp.

ESBLs: TEM-3, TEM-7, TEM-12, TEM-26, SHV-2, SHV-4, SHV-5, SHV-7, CTX-M2, CTX-M3
Justifiable Conclusions

• %T above MIC is predictive of bacterial kill *in vivo*
 » Independent of presence of an ESBL
 » Independent of type of ESBL

• **It is the MIC that is predictive of kill, not the gene per se**

• **The MIC is related to level of gene expression**

• **If the ESBL is present, but expressed at a level such that MIC exceeds wild-type but is below the clinical breakpoint, the strain will respond normally to treatment using standard dosing regimens**
In homine
The problem of ‘proof’

- Natural resolution rates for many infections are high
- Prospective controlled clinical studies (registration trials) usually have pre-determined breakpoints, and tend to either
 - exclude patients whose isolates have higher MICs
 - or
 - recruit insufficient patients whose isolates have MICs around the near the breakpoint

- Real-world observational studies encounter problems too, e.g.:
 - Multiple agents used during treatment
 - Formal recording of MICs not done
The Wrong Breakpoints “Experiment”

- The CLSI breakpoints for cephalosporins prior to January 2010 allowed us to conduct a natural experiment:
 - Treatment of ESBL-producing Enterobacteriaceae with extended-spectrum generation cephalosporins whose MICs were at or below breakpoint (≤ 8 mg/L)
Outcome versus 3GC MIC

Septicaemia from *Klebsiella* spp and *E. coli* with ESBLs

Andes & Craig, CMI 2005; 11 (Suppl 6):10-17
Outcome versus CAZ MIC

Septicaemia from *E. coli* with CTX-M ESBLs
Treated with Ceftazidime alone 2g 8-hrly

Bin et al, DMID 2006; 56:351-7
Outcome versus Cefepime MIC

Gram-negative Septicaemia treated with Cefepime 1-2g 12-hrly

Bhat et al, AAC 2007; 51:4390-5
What about Isolates Harbouring Carbapenemases?

- Similar situation applies to that of extended-spectrum cephalosporins
- Emergence of IMP, VIM and KPC enzymes in particular but MICs sometimes below clinical breakpoint
Meropenem / Escherichia coli
EUCAST MIC Distribution - Reference Database

MIC distributions include collated data from multiple sources, geographical areas and time periods and can never be used to infer rates of resistance.

MIC Epidemiological cut-off. WT ≤ 0.125 mg/L
Clinical breakpoints: S ≤ 2 mg/L, R > 8 mg/L

9005 observations (68 data sources)
Meropenem / Klebsiella pneumoniae
EUCAST MIC Distribution - Reference Database

MIC distributions include collated data from multiple sources, geographical areas and time periods and can never be used to infer rates of resistance.

MIC
Epidemiological cut-off: WT ≤ 0.125 mg/L
Clinical breakpoints: S ≤ 2 mg/L, R > 8 mg/L

13171 observations (67 data sources)
Doripenem / Escherichia coli
EUCAST MIC Distribution - Reference Database

MIC distributions include collated data from multiple sources, geographical areas and time periods and can never be used to infer rates of resistance.

MIC (mg/L)

% microorganisms

Epidemiological cut-off: WT ≤ 0.125 mg/L
Clinical breakpoints: S ≤ 1 mg/L, R > 4 mg/L

5602 observations (7 data sources)
Doripenem / Klebsiella pneumoniae
EUCAST MIC Distribution - Reference Database

MIC distributions include collated data from multiple sources, geographical areas and time periods and can never be used to infer rates of resistance.

Epidemiological cut-off: WT ≤ 0.125 mg/L
Clinical breakpoints: S ≤ 1 mg/L, R > 4 mg/L
2626 observations (5 data sources)
• 162 patients with bacteraemia
• Treatments were frequently combinations
• Data on single agent carbapenem treatment not given
• > 4 µg/ml used in analysis to both imipenem and meropenem despite different activities of the two drugs

MIC not significant in Cox multivariate regression (>0.1)

FIG. 1. Kaplan-Meier curves of survival probability of patients with *K. pneumoniae* bloodstream infections according to susceptibility of the infecting organism to carbapenems. Patients infected with a VIM-positive organism for which the MICs of both imipenem and meropenem were >4 µg/ml were more likely to die than those infected with a VIM-positive carbapenem-susceptible or VIM-negative organism (log rank = 6.27, *P* = 0.044).
<table>
<thead>
<tr>
<th>Age (year)/sex</th>
<th>Underlying condition</th>
<th>Acute illness (tested isolate site)</th>
<th>Apache II</th>
<th>MIC (Vitek/Etest)</th>
<th>Treatment (days)</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>46/F</td>
<td>Skin graft</td>
<td>Bacteremia (blood)</td>
<td>6</td>
<td>4/8</td>
<td>Imipenem (7), port removal</td>
<td>Microbiologic and clinical success</td>
</tr>
<tr>
<td>61/F</td>
<td>CHF</td>
<td>Pycelonephritis (urine)</td>
<td>21</td>
<td>2/≥32</td>
<td>Imipenem (7)</td>
<td>Microbiologic and clinical success</td>
</tr>
<tr>
<td>82/M</td>
<td>None</td>
<td>Urosepsis (blood)</td>
<td>25</td>
<td>4/2</td>
<td>Imipenem (14)</td>
<td>Microbiologic and clinical success</td>
</tr>
<tr>
<td>92/M</td>
<td>Dementia</td>
<td>Pneumonia (resp)</td>
<td>12</td>
<td>4/2</td>
<td>Imipenem (3)</td>
<td>Clinical success</td>
</tr>
<tr>
<td>64/F</td>
<td>Esophageal cancer</td>
<td>Tracheobronchitis (resp)</td>
<td>15</td>
<td>4/2</td>
<td>Imipenem (12)</td>
<td>Microbiologic failure</td>
</tr>
<tr>
<td>76/M</td>
<td>Cerebral hemorrhage</td>
<td>Tracheobronchitis (resp)</td>
<td>21</td>
<td>2/0.25</td>
<td>Meropenem (7)</td>
<td>Clinical and microbiologic failure</td>
</tr>
<tr>
<td>69/F</td>
<td>Metastatic cancer</td>
<td>Pneumonia (resp)</td>
<td>36</td>
<td>4/8</td>
<td>Imipenem (6)</td>
<td>Clinical failure/death</td>
</tr>
<tr>
<td>77/M</td>
<td>MRSA abscess</td>
<td>Tracheobronchitis (resp)</td>
<td>23</td>
<td>4/≥32</td>
<td>Imipenem (7)</td>
<td>Microbiologic failure</td>
</tr>
<tr>
<td>52/M</td>
<td>Melanoma</td>
<td>UT1 (urine)</td>
<td>37</td>
<td>4/12</td>
<td>Imipenem (14)</td>
<td>Microbiologic failure</td>
</tr>
<tr>
<td>67/M</td>
<td>Polyneuropathy</td>
<td>Urosepsis (blood)</td>
<td>21</td>
<td>4/≥32</td>
<td>Tigecycline (7)</td>
<td>Clinical and microbiologic failure</td>
</tr>
<tr>
<td>65/M</td>
<td>Lung mass</td>
<td>Tracheobronchitis (resp)</td>
<td>15</td>
<td>4/1</td>
<td>Tigecycline (7)</td>
<td>Clinical and microbiologic success</td>
</tr>
<tr>
<td>83/F</td>
<td>Laryngeal cancer</td>
<td>Pneumonia (blood)</td>
<td>14</td>
<td>≥16/≥32</td>
<td>Tigecycline (7)</td>
<td>Clinical success</td>
</tr>
<tr>
<td>39/F</td>
<td>Stem cell transplant</td>
<td>Urosepsis (urine)</td>
<td>12</td>
<td>8/8</td>
<td>Tigecycline (14)</td>
<td>Clinical success</td>
</tr>
<tr>
<td>79/M</td>
<td>None</td>
<td>Pneumonia (resp)</td>
<td>27</td>
<td>8/32</td>
<td>Tigecycline (14)</td>
<td>Clinical success</td>
</tr>
<tr>
<td>19/M</td>
<td>Trauma, craniotomy</td>
<td>Shunt associated meningitis (CSF)</td>
<td>28</td>
<td>N/A</td>
<td>Tigecycline/gentamicin\a</td>
<td>Clinical and microbiologic success</td>
</tr>
<tr>
<td>79/F</td>
<td>s/p CABG</td>
<td>Bacteremia (blood)</td>
<td>29</td>
<td>8/2</td>
<td>Tigecycline/imipenem</td>
<td>Clinical failure/death</td>
</tr>
<tr>
<td>0/M</td>
<td>Seizures</td>
<td>Pneumonia (resp)</td>
<td>n/a</td>
<td>≥16/≥32</td>
<td>Gentamicin (7)</td>
<td>Clinical success</td>
</tr>
<tr>
<td>60/F</td>
<td>Metastatic cancer</td>
<td>Wound (wound)</td>
<td>25</td>
<td>8/≥32</td>
<td>Amikacin (7)</td>
<td>Clinical success</td>
</tr>
<tr>
<td>59/F</td>
<td>ESRD</td>
<td>Line infection (blood)</td>
<td>22</td>
<td>≥16/≥32</td>
<td>Gentamicin (10)</td>
<td>Clinical and microbiologic success</td>
</tr>
<tr>
<td>60/F</td>
<td>Pelvic infection</td>
<td>Bacteremia (blood)</td>
<td>24</td>
<td>≥16/8</td>
<td>Meropenem (10)</td>
<td>Clinical and microbiologic failure</td>
</tr>
<tr>
<td>50/M</td>
<td>Liver transplant</td>
<td>Bacteremia</td>
<td>9</td>
<td>≥16/8</td>
<td>Meropenem (7)</td>
<td>Clinical and microbiologic success</td>
</tr>
</tbody>
</table>
In the end...

- An MIC is an MIC is an MIC
 (Apologies to Gertrude Stein, 1913)

- “It’s the MIC, stupid” (Kahlmeter, 2007)